芯片制造中人类科技之巅的设备---光刻机

行业资讯  |  2023-06-06  

摘要

光刻机是芯片制造中最复杂、最昂贵的设备。芯片制造可以包括多个工艺,如初步氧化、涂光刻胶、曝光、显影、刻蚀、离子注入。这个过程需要用到的设备种类繁多,包括氧化炉、涂胶显影机、光刻机、薄膜沉积设备、刻蚀机、离子注入机、抛光设备、清洗设备和检测设备等。在整个半导体芯片制造过程中,光刻是最复杂工艺,光刻工艺的费用约占芯片制造成本的1/3左右,耗费时间占比约为40-50%,光刻工艺所需的光刻机是最贵的半导体设备。

光刻机可分为前道光刻机和后道光刻机。光刻机既可以用在前道工艺,也可以用在后道工艺,前道光刻机用于芯片的制造,曝光工艺极其复杂,后道光刻机主要用于封装测试,实现高性能的先进封装,技术难度相对较小。

光刻机厂商研发费用率高:22年全球前五大半导体设备厂商的平均研发费用率为11%, 其中ASML研发费用率为15%, 高于其他设备厂商。

光刻机零部件供应商遍布全球,核心零部件来自德国和美国:代表光刻机最高端技术的EUV光刻机里面有10万多个零部件,全球超过5000家供应商。整个光刻机中,荷兰腔体和英国真空占32%,美国光源占27%,德国光学系统占14%, 日本的材料占27%。

2021年全球前道光刻设备市场规模为172亿美元,其市场份额在晶圆生产设备中占比为20%,仅次于刻蚀设备。光刻机价格昂贵, ASML当前EUV光刻机单价为1.5亿-2亿美元。

IGBT相比MOSFET,可在更高电压下持续工作,同时需要兼顾高功率密度、低损耗、高可靠性、散热好、低成本等因素。一颗高性能、高可靠性与低成本的IGBT芯片,不仅仅需要在设计端不断优化器件结构,对晶圆制造和封装也提高了更高的要求。

1961年, 第一台接触式光刻机由美国GCA推出, 历经60年的发展,ASML后来者居上,成为当前光刻机行业的绝对龙头。光刻机问世:1955年,贝尔实验室开始采用光刻技术, 1961年,GCA公司制造出第一台接触式光刻机。步进式光刻机推出:1978年,步进式光刻机推出,1984年尼康和GCA各占30%份额,同年ASML成立。

浸没式光刻机推出:2000年,ASML推出双工件台光刻机,2003年ASML推出浸没式光刻机,至此ASML一举超越其他厂商,后来者居上。EUV光刻机推出:2013年,ASML推出第一台EUV量产产品,进一步加强行业垄断地位。

接触式光刻技术良率低、成本高:接触式光刻技术出现于20世纪60年代,是小规模集成电路时期最主要的光刻技术。接触式光刻技术中掩膜版与晶圆表面的光刻胶直接接触,一次曝光整个衬底,掩膜版图形与晶圆图形的尺寸关系是1:1 ,分辨率可达亚微米级。

特点:接触式可以减小光的衍射效应,但在接触过程中晶圆与掩膜版之间的摩擦容易形成划痕,产生颗粒沾污,降低了晶圆良率及掩膜版的使用寿命,需要经常更换掩膜版,故接近式光刻技术得以引入。
接近式光刻技术分辨率有限:接近式光刻技术广泛应用于20世纪70年代,接近式光刻技术中的掩膜版与晶圆表明光刻胶并未直接接触,留有被氮气填充的间隙。
特点:最小分辨尺寸与间隙成正比,间隙越小,分辨率越高。缺点是掩膜版和晶圆之间的间距会导致光产生衍射效应,因此接近式光刻机的空间分辨率极限约为2μ m。随着特征尺寸缩小,出现了投影光刻技术。

投影光刻技术有效提高分辨率:20世纪70年代中后期出现投影光刻技术,基于远场傅里叶光学成像原理,在掩膜版和光刻胶之间采用了具有缩小倍率的投影成像物镜,有效提高了分辨率。早期掩膜版与衬底图形尺寸比为1:1,随着集成电路尺寸的不断缩小,出现了缩小倍率的步进重复光刻技术。

步进重复光刻主要应用于0.25μm以上工艺:光刻时掩膜版固定不动,晶圆步进运动,完成全部曝光工作。随着集成电路的集成度不断提高,芯片面积变大,要求一次曝光的面积增大,促使更为先进的步进扫描光刻机问世。目前步进重复光刻主要应用于0.25μ m以上工艺及先进封装领域。
步进扫描光刻被大量采用:步进扫描光刻机在曝光视场尺寸及曝光均匀性上更有优势,在0.25μm以下的制造中减少了步进重复光刻机的应用。步进扫描采用动态扫描方式,掩膜版相对晶圆同步完成扫描运动,完成当前曝光后,至下一步扫描场位置,继续进行重复曝光,直到整个晶圆曝光完毕。从0.18μm节点开始,硅基底CMOS工艺大量采用步进扫描光刻,7nm以下工艺节点使用的EUV采用的也是步进扫描方式。
投影光刻技术根据投影物镜下方和晶圆间是否有水作为介质可以分为干式光刻和浸润式光刻。
光刻机的技术水平很大程度上决定了集成电路的发展水平。随着EUV光刻机的出现,芯片制程最小达到3nm。目前ASML正在研发High-NA EUV光刻机,制程可达2nm、 1.8nm,预计2025年量产。同时,英伟达在23年GTC大会上也表示其通过突破性的光刻计算库cuLitho,将计算光刻加速40倍以上,使得2nm及更先进芯片的生产成为可能, ASML、台积电已参与合作,届时将带动芯片性能再次提高。
光刻技术利用多重曝光工艺实现更小线宽。三种多重曝光技术:LELE、LFLE、SADP,误差较小的是SADP。
3) SADP又称侧墙图案转移,用沉积、刻蚀技术提高光刻精度:在晶圆上沉积金属介质层、硬掩膜材料和芯轴材料(牺牲层)旋涂光刻胶,曝光显影后留下所需图形并刻蚀核心芯轴在芯轴外围沉积一层间隔侧墙,侧墙的大小即互连线的线间距,要精确控制其均匀度保证互连线间距的均一性清除掉芯轴材料,仅留下侧壁,再一次刻蚀将侧壁图形转移到下层掩膜层侧墙清除,经过掩膜层修饰后的图形,经过再一次刻蚀后传递给金属介质层形成最终图形, 线宽仅为原来的1/2,SADP可以两次达到4倍精度。
多重曝光可实现7nm制程但技术复杂成本高:多次LE或SADP可以实现7nm制程, 但多重曝光技术提高了对刻蚀、 沉积等工艺的技术要求并且增加了使用次数, 使晶圆光刻成本增加了2-3倍。
历史转折点:ASML凭借浸润式光刻机垄断市场。 在浸润式光刻技术出现之前, 各厂商专注于157nm波长技术的研发, “浸润式微影技术” 被提出后, ASML开始与台积电合作开发浸润式光刻机, 并于2007年推出浸润式光刻机, 成功垄断市场。而同为光刻巨头的日本尼康、 日本佳能主推的157nm光源干式光刻机被市场逐渐抛弃, 两家公司由盛转衰。

ASML一家独大, Nikon和Canon瓜分剩余市场。
1) 全球光刻机市场的主要竞争公司为ASML、Nikon和Canon。ASML在超高端光刻机领域独占鳌头,旗下产品覆盖面最广。Canon光刻机主要集中在i-line光刻机, Nikon除EUV外均有涉及。
2) 光刻机市场份额主要被ASML、Canon、Nikon包揽,从这三家的占比情况来看,2022年ASML占据82%,Canon占据10%,Nikon占据8%。

深圳市泽诚自动化设备有限公司